\(\int \cos ^4(c+d x) (a+b \sec (c+d x))^{3/2} (B \sec (c+d x)+C \sec ^2(c+d x)) \, dx\) [828]

   Optimal result
   Rubi [A] (verified)
   Mathematica [B] (warning: unable to verify)
   Maple [B] (verified)
   Fricas [F]
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 42, antiderivative size = 520 \[ \int \cos ^4(c+d x) (a+b \sec (c+d x))^{3/2} \left (B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\frac {(a-b) \sqrt {a+b} \left (16 a^2 B+3 b^2 B+30 a b C\right ) \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{24 a b d}+\frac {\sqrt {a+b} \left (16 a^2 B+14 a b B+3 b^2 B+12 a^2 C+30 a b C\right ) \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{24 a d}-\frac {\sqrt {a+b} \left (12 a^2 b B-b^3 B+8 a^3 C+6 a b^2 C\right ) \cot (c+d x) \operatorname {EllipticPi}\left (\frac {a+b}{a},\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{8 a^2 d}+\frac {\left (16 a^2 B+3 b^2 B+30 a b C\right ) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{24 a d}+\frac {(7 b B+6 a C) \cos (c+d x) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{12 d}+\frac {a B \cos ^2(c+d x) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{3 d} \]

[Out]

1/24*(a-b)*(16*B*a^2+3*B*b^2+30*C*a*b)*cot(d*x+c)*EllipticE((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),((a+b)/(a-b))^(
1/2))*(a+b)^(1/2)*(b*(1-sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/a/b/d+1/24*(16*B*a^2+14*B*a*b
+3*B*b^2+12*C*a^2+30*C*a*b)*cot(d*x+c)*EllipticF((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),((a+b)/(a-b))^(1/2))*(a+b)
^(1/2)*(b*(1-sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/a/d-1/8*(12*B*a^2*b-B*b^3+8*C*a^3+6*C*a*
b^2)*cot(d*x+c)*EllipticPi((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),(a+b)/a,((a+b)/(a-b))^(1/2))*(a+b)^(1/2)*(b*(1-s
ec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/a^2/d+1/24*(16*B*a^2+3*B*b^2+30*C*a*b)*sin(d*x+c)*(a+b
*sec(d*x+c))^(1/2)/a/d+1/12*(7*B*b+6*C*a)*cos(d*x+c)*sin(d*x+c)*(a+b*sec(d*x+c))^(1/2)/d+1/3*a*B*cos(d*x+c)^2*
sin(d*x+c)*(a+b*sec(d*x+c))^(1/2)/d

Rubi [A] (verified)

Time = 1.54 (sec) , antiderivative size = 520, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.190, Rules used = {4157, 4110, 4189, 4143, 4006, 3869, 3917, 4089} \[ \int \cos ^4(c+d x) (a+b \sec (c+d x))^{3/2} \left (B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\frac {\sqrt {a+b} \left (16 a^2 B+12 a^2 C+14 a b B+30 a b C+3 b^2 B\right ) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{24 a d}+\frac {(a-b) \sqrt {a+b} \left (16 a^2 B+30 a b C+3 b^2 B\right ) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{24 a b d}+\frac {\left (16 a^2 B+30 a b C+3 b^2 B\right ) \sin (c+d x) \sqrt {a+b \sec (c+d x)}}{24 a d}-\frac {\sqrt {a+b} \left (8 a^3 C+12 a^2 b B+6 a b^2 C-b^3 B\right ) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{a},\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{8 a^2 d}+\frac {(6 a C+7 b B) \sin (c+d x) \cos (c+d x) \sqrt {a+b \sec (c+d x)}}{12 d}+\frac {a B \sin (c+d x) \cos ^2(c+d x) \sqrt {a+b \sec (c+d x)}}{3 d} \]

[In]

Int[Cos[c + d*x]^4*(a + b*Sec[c + d*x])^(3/2)*(B*Sec[c + d*x] + C*Sec[c + d*x]^2),x]

[Out]

((a - b)*Sqrt[a + b]*(16*a^2*B + 3*b^2*B + 30*a*b*C)*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sq
rt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(24
*a*b*d) + (Sqrt[a + b]*(16*a^2*B + 14*a*b*B + 3*b^2*B + 12*a^2*C + 30*a*b*C)*Cot[c + d*x]*EllipticF[ArcSin[Sqr
t[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c
 + d*x]))/(a - b))])/(24*a*d) - (Sqrt[a + b]*(12*a^2*b*B - b^3*B + 8*a^3*C + 6*a*b^2*C)*Cot[c + d*x]*EllipticP
i[(a + b)/a, ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b
)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(8*a^2*d) + ((16*a^2*B + 3*b^2*B + 30*a*b*C)*Sqrt[a + b*Sec[c + d*
x]]*Sin[c + d*x])/(24*a*d) + ((7*b*B + 6*a*C)*Cos[c + d*x]*Sqrt[a + b*Sec[c + d*x]]*Sin[c + d*x])/(12*d) + (a*
B*Cos[c + d*x]^2*Sqrt[a + b*Sec[c + d*x]]*Sin[c + d*x])/(3*d)

Rule 3869

Int[1/Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[2*(Rt[a + b, 2]/(a*d*Cot[c + d*x]))*Sqrt[b
*((1 - Csc[c + d*x])/(a + b))]*Sqrt[(-b)*((1 + Csc[c + d*x])/(a - b))]*EllipticPi[(a + b)/a, ArcSin[Sqrt[a + b
*Csc[c + d*x]]/Rt[a + b, 2]], (a + b)/(a - b)], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0]

Rule 3917

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[-2*(Rt[a + b, 2]/(b*
f*Cot[e + f*x]))*Sqrt[(b*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[(-b)*((1 + Csc[e + f*x])/(a - b))]*EllipticF[ArcSin
[Sqrt[a + b*Csc[e + f*x]]/Rt[a + b, 2]], (a + b)/(a - b)], x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4006

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[c, In
t[1/Sqrt[a + b*Csc[e + f*x]], x], x] + Dist[d, Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a,
b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]

Rule 4089

Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)
], x_Symbol] :> Simp[-2*(A*b - a*B)*Rt[a + b*(B/A), 2]*Sqrt[b*((1 - Csc[e + f*x])/(a + b))]*(Sqrt[(-b)*((1 + C
sc[e + f*x])/(a - b))]/(b^2*f*Cot[e + f*x]))*EllipticE[ArcSin[Sqrt[a + b*Csc[e + f*x]]/Rt[a + b*(B/A), 2]], (a
*A + b*B)/(a*A - b*B)], x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[a^2 - b^2, 0] && EqQ[A^2 - B^2, 0]

Rule 4110

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[a*A*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m - 1)*((d*Csc[e + f*x])^n/(f*n)), x]
+ Dist[1/(d*n), Int[(a + b*Csc[e + f*x])^(m - 2)*(d*Csc[e + f*x])^(n + 1)*Simp[a*(a*B*n - A*b*(m - n - 1)) + (
2*a*b*B*n + A*(b^2*n + a^2*(1 + n)))*Csc[e + f*x] + b*(b*B*n + a*A*(m + n))*Csc[e + f*x]^2, x], x], x] /; Free
Q[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && NeQ[a^2 - b^2, 0] && GtQ[m, 1] && LeQ[n, -1]

Rule 4143

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_
.) + (a_)], x_Symbol] :> Int[(A + (B - C)*Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]], x] + Dist[C, Int[Csc[e + f*x
]*((1 + Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]]), x], x] /; FreeQ[{a, b, e, f, A, B, C}, x] && NeQ[a^2 - b^2, 0
]

Rule 4157

Int[((a_.) + csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(
x_)]^2*(C_.))*((c_.) + csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.), x_Symbol] :> Dist[1/b^2, Int[(a + b*Csc[e + f*x])
^(m + 1)*(c + d*Csc[e + f*x])^n*(b*B - a*C + b*C*Csc[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m,
 n}, x] && EqQ[A*b^2 - a*b*B + a^2*C, 0]

Rule 4189

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[A*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1
)*((d*Csc[e + f*x])^n/(a*f*n)), x] + Dist[1/(a*d*n), Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1)*Simp[
a*B*n - A*b*(m + n + 1) + a*(A + A*n + C*n)*Csc[e + f*x] + A*b*(m + n + 2)*Csc[e + f*x]^2, x], x], x] /; FreeQ
[{a, b, d, e, f, A, B, C, m}, x] && NeQ[a^2 - b^2, 0] && LeQ[n, -1]

Rubi steps \begin{align*} \text {integral}& = \int \cos ^3(c+d x) (a+b \sec (c+d x))^{3/2} (B+C \sec (c+d x)) \, dx \\ & = \frac {a B \cos ^2(c+d x) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{3 d}-\frac {1}{3} \int \frac {\cos ^2(c+d x) \left (-\frac {1}{2} a (7 b B+6 a C)-\left (2 a^2 B+3 b^2 B+6 a b C\right ) \sec (c+d x)-\frac {3}{2} b (a B+2 b C) \sec ^2(c+d x)\right )}{\sqrt {a+b \sec (c+d x)}} \, dx \\ & = \frac {(7 b B+6 a C) \cos (c+d x) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{12 d}+\frac {a B \cos ^2(c+d x) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{3 d}+\frac {\int \frac {\cos (c+d x) \left (\frac {1}{4} a \left (16 a^2 B+3 b^2 B+30 a b C\right )+\frac {1}{2} a \left (13 a b B+6 a^2 C+12 b^2 C\right ) \sec (c+d x)+\frac {1}{4} a b (7 b B+6 a C) \sec ^2(c+d x)\right )}{\sqrt {a+b \sec (c+d x)}} \, dx}{6 a} \\ & = \frac {\left (16 a^2 B+3 b^2 B+30 a b C\right ) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{24 a d}+\frac {(7 b B+6 a C) \cos (c+d x) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{12 d}+\frac {a B \cos ^2(c+d x) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{3 d}-\frac {\int \frac {-\frac {3}{8} a \left (12 a^2 b B-b^3 B+8 a^3 C+6 a b^2 C\right )-\frac {1}{4} a^2 b (7 b B+6 a C) \sec (c+d x)+\frac {1}{8} a b \left (16 a^2 B+3 b^2 B+30 a b C\right ) \sec ^2(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx}{6 a^2} \\ & = \frac {\left (16 a^2 B+3 b^2 B+30 a b C\right ) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{24 a d}+\frac {(7 b B+6 a C) \cos (c+d x) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{12 d}+\frac {a B \cos ^2(c+d x) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{3 d}-\frac {\int \frac {-\frac {3}{8} a \left (12 a^2 b B-b^3 B+8 a^3 C+6 a b^2 C\right )+\left (-\frac {1}{4} a^2 b (7 b B+6 a C)-\frac {1}{8} a b \left (16 a^2 B+3 b^2 B+30 a b C\right )\right ) \sec (c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx}{6 a^2}-\frac {\left (b \left (16 a^2 B+3 b^2 B+30 a b C\right )\right ) \int \frac {\sec (c+d x) (1+\sec (c+d x))}{\sqrt {a+b \sec (c+d x)}} \, dx}{48 a} \\ & = \frac {(a-b) \sqrt {a+b} \left (16 a^2 B+3 b^2 B+30 a b C\right ) \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{24 a b d}+\frac {\left (16 a^2 B+3 b^2 B+30 a b C\right ) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{24 a d}+\frac {(7 b B+6 a C) \cos (c+d x) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{12 d}+\frac {a B \cos ^2(c+d x) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{3 d}+\frac {\left (b \left (16 a^2 B+14 a b B+3 b^2 B+12 a^2 C+30 a b C\right )\right ) \int \frac {\sec (c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx}{48 a}+\frac {\left (12 a^2 b B-b^3 B+8 a^3 C+6 a b^2 C\right ) \int \frac {1}{\sqrt {a+b \sec (c+d x)}} \, dx}{16 a} \\ & = \frac {(a-b) \sqrt {a+b} \left (16 a^2 B+3 b^2 B+30 a b C\right ) \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{24 a b d}+\frac {\sqrt {a+b} \left (16 a^2 B+14 a b B+3 b^2 B+12 a^2 C+30 a b C\right ) \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{24 a d}-\frac {\sqrt {a+b} \left (12 a^2 b B-b^3 B+8 a^3 C+6 a b^2 C\right ) \cot (c+d x) \operatorname {EllipticPi}\left (\frac {a+b}{a},\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{8 a^2 d}+\frac {\left (16 a^2 B+3 b^2 B+30 a b C\right ) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{24 a d}+\frac {(7 b B+6 a C) \cos (c+d x) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{12 d}+\frac {a B \cos ^2(c+d x) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{3 d} \\ \end{align*}

Mathematica [B] (warning: unable to verify)

Leaf count is larger than twice the leaf count of optimal. \(1516\) vs. \(2(520)=1040\).

Time = 20.01 (sec) , antiderivative size = 1516, normalized size of antiderivative = 2.92 \[ \int \cos ^4(c+d x) (a+b \sec (c+d x))^{3/2} \left (B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\frac {\sqrt {a+b \sec (c+d x)} \left (\frac {1}{12} a B \sin (c+d x)+\frac {1}{24} (7 b B+6 a C) \sin (2 (c+d x))+\frac {1}{12} a B \sin (3 (c+d x))\right )}{d}+\frac {\sqrt {a+b \sec (c+d x)} \sqrt {\frac {1}{1-\tan ^2\left (\frac {1}{2} (c+d x)\right )}} \left (16 a^3 B \tan \left (\frac {1}{2} (c+d x)\right )+16 a^2 b B \tan \left (\frac {1}{2} (c+d x)\right )+3 a b^2 B \tan \left (\frac {1}{2} (c+d x)\right )+3 b^3 B \tan \left (\frac {1}{2} (c+d x)\right )+30 a^2 b C \tan \left (\frac {1}{2} (c+d x)\right )+30 a b^2 C \tan \left (\frac {1}{2} (c+d x)\right )-32 a^3 B \tan ^3\left (\frac {1}{2} (c+d x)\right )-6 a b^2 B \tan ^3\left (\frac {1}{2} (c+d x)\right )-60 a^2 b C \tan ^3\left (\frac {1}{2} (c+d x)\right )+16 a^3 B \tan ^5\left (\frac {1}{2} (c+d x)\right )-16 a^2 b B \tan ^5\left (\frac {1}{2} (c+d x)\right )+3 a b^2 B \tan ^5\left (\frac {1}{2} (c+d x)\right )-3 b^3 B \tan ^5\left (\frac {1}{2} (c+d x)\right )+30 a^2 b C \tan ^5\left (\frac {1}{2} (c+d x)\right )-30 a b^2 C \tan ^5\left (\frac {1}{2} (c+d x)\right )+72 a^2 b B \operatorname {EllipticPi}\left (-1,\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {a-b}{a+b}\right ) \sqrt {1-\tan ^2\left (\frac {1}{2} (c+d x)\right )} \sqrt {\frac {a+b-a \tan ^2\left (\frac {1}{2} (c+d x)\right )+b \tan ^2\left (\frac {1}{2} (c+d x)\right )}{a+b}}-6 b^3 B \operatorname {EllipticPi}\left (-1,\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {a-b}{a+b}\right ) \sqrt {1-\tan ^2\left (\frac {1}{2} (c+d x)\right )} \sqrt {\frac {a+b-a \tan ^2\left (\frac {1}{2} (c+d x)\right )+b \tan ^2\left (\frac {1}{2} (c+d x)\right )}{a+b}}+48 a^3 C \operatorname {EllipticPi}\left (-1,\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {a-b}{a+b}\right ) \sqrt {1-\tan ^2\left (\frac {1}{2} (c+d x)\right )} \sqrt {\frac {a+b-a \tan ^2\left (\frac {1}{2} (c+d x)\right )+b \tan ^2\left (\frac {1}{2} (c+d x)\right )}{a+b}}+36 a b^2 C \operatorname {EllipticPi}\left (-1,\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {a-b}{a+b}\right ) \sqrt {1-\tan ^2\left (\frac {1}{2} (c+d x)\right )} \sqrt {\frac {a+b-a \tan ^2\left (\frac {1}{2} (c+d x)\right )+b \tan ^2\left (\frac {1}{2} (c+d x)\right )}{a+b}}+72 a^2 b B \operatorname {EllipticPi}\left (-1,\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {a-b}{a+b}\right ) \tan ^2\left (\frac {1}{2} (c+d x)\right ) \sqrt {1-\tan ^2\left (\frac {1}{2} (c+d x)\right )} \sqrt {\frac {a+b-a \tan ^2\left (\frac {1}{2} (c+d x)\right )+b \tan ^2\left (\frac {1}{2} (c+d x)\right )}{a+b}}-6 b^3 B \operatorname {EllipticPi}\left (-1,\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {a-b}{a+b}\right ) \tan ^2\left (\frac {1}{2} (c+d x)\right ) \sqrt {1-\tan ^2\left (\frac {1}{2} (c+d x)\right )} \sqrt {\frac {a+b-a \tan ^2\left (\frac {1}{2} (c+d x)\right )+b \tan ^2\left (\frac {1}{2} (c+d x)\right )}{a+b}}+48 a^3 C \operatorname {EllipticPi}\left (-1,\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {a-b}{a+b}\right ) \tan ^2\left (\frac {1}{2} (c+d x)\right ) \sqrt {1-\tan ^2\left (\frac {1}{2} (c+d x)\right )} \sqrt {\frac {a+b-a \tan ^2\left (\frac {1}{2} (c+d x)\right )+b \tan ^2\left (\frac {1}{2} (c+d x)\right )}{a+b}}+36 a b^2 C \operatorname {EllipticPi}\left (-1,\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {a-b}{a+b}\right ) \tan ^2\left (\frac {1}{2} (c+d x)\right ) \sqrt {1-\tan ^2\left (\frac {1}{2} (c+d x)\right )} \sqrt {\frac {a+b-a \tan ^2\left (\frac {1}{2} (c+d x)\right )+b \tan ^2\left (\frac {1}{2} (c+d x)\right )}{a+b}}+(a+b) \left (16 a^2 B+3 b^2 B+30 a b C\right ) E\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {a-b}{a+b}\right ) \sqrt {1-\tan ^2\left (\frac {1}{2} (c+d x)\right )} \left (1+\tan ^2\left (\frac {1}{2} (c+d x)\right )\right ) \sqrt {\frac {a+b-a \tan ^2\left (\frac {1}{2} (c+d x)\right )+b \tan ^2\left (\frac {1}{2} (c+d x)\right )}{a+b}}-2 a \left (a b (26 B-6 C)+12 a^2 C+b^2 (-7 B+24 C)\right ) \operatorname {EllipticF}\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {a-b}{a+b}\right ) \sqrt {1-\tan ^2\left (\frac {1}{2} (c+d x)\right )} \left (1+\tan ^2\left (\frac {1}{2} (c+d x)\right )\right ) \sqrt {\frac {a+b-a \tan ^2\left (\frac {1}{2} (c+d x)\right )+b \tan ^2\left (\frac {1}{2} (c+d x)\right )}{a+b}}\right )}{24 a d \sqrt {b+a \cos (c+d x)} \sqrt {\sec (c+d x)} \left (1+\tan ^2\left (\frac {1}{2} (c+d x)\right )\right )^{3/2} \sqrt {\frac {a+b-a \tan ^2\left (\frac {1}{2} (c+d x)\right )+b \tan ^2\left (\frac {1}{2} (c+d x)\right )}{1+\tan ^2\left (\frac {1}{2} (c+d x)\right )}}} \]

[In]

Integrate[Cos[c + d*x]^4*(a + b*Sec[c + d*x])^(3/2)*(B*Sec[c + d*x] + C*Sec[c + d*x]^2),x]

[Out]

(Sqrt[a + b*Sec[c + d*x]]*((a*B*Sin[c + d*x])/12 + ((7*b*B + 6*a*C)*Sin[2*(c + d*x)])/24 + (a*B*Sin[3*(c + d*x
)])/12))/d + (Sqrt[a + b*Sec[c + d*x]]*Sqrt[(1 - Tan[(c + d*x)/2]^2)^(-1)]*(16*a^3*B*Tan[(c + d*x)/2] + 16*a^2
*b*B*Tan[(c + d*x)/2] + 3*a*b^2*B*Tan[(c + d*x)/2] + 3*b^3*B*Tan[(c + d*x)/2] + 30*a^2*b*C*Tan[(c + d*x)/2] +
30*a*b^2*C*Tan[(c + d*x)/2] - 32*a^3*B*Tan[(c + d*x)/2]^3 - 6*a*b^2*B*Tan[(c + d*x)/2]^3 - 60*a^2*b*C*Tan[(c +
 d*x)/2]^3 + 16*a^3*B*Tan[(c + d*x)/2]^5 - 16*a^2*b*B*Tan[(c + d*x)/2]^5 + 3*a*b^2*B*Tan[(c + d*x)/2]^5 - 3*b^
3*B*Tan[(c + d*x)/2]^5 + 30*a^2*b*C*Tan[(c + d*x)/2]^5 - 30*a*b^2*C*Tan[(c + d*x)/2]^5 + 72*a^2*b*B*EllipticPi
[-1, ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqrt[(a + b - a*Tan[(c + d*x)/2]^
2 + b*Tan[(c + d*x)/2]^2)/(a + b)] - 6*b^3*B*EllipticPi[-1, ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*Sqrt[1
- Tan[(c + d*x)/2]^2]*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2]^2)/(a + b)] + 48*a^3*C*EllipticP
i[-1, ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqrt[(a + b - a*Tan[(c + d*x)/2]
^2 + b*Tan[(c + d*x)/2]^2)/(a + b)] + 36*a*b^2*C*EllipticPi[-1, ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*Sqr
t[1 - Tan[(c + d*x)/2]^2]*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2]^2)/(a + b)] + 72*a^2*b*B*Ell
ipticPi[-1, ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*Tan[(c + d*x)/2]^2*Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqrt[(a
 + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2]^2)/(a + b)] - 6*b^3*B*EllipticPi[-1, ArcSin[Tan[(c + d*x)/2]]
, (a - b)/(a + b)]*Tan[(c + d*x)/2]^2*Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[
(c + d*x)/2]^2)/(a + b)] + 48*a^3*C*EllipticPi[-1, ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*Tan[(c + d*x)/2]
^2*Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2]^2)/(a + b)] + 36*a*b^2
*C*EllipticPi[-1, ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*Tan[(c + d*x)/2]^2*Sqrt[1 - Tan[(c + d*x)/2]^2]*S
qrt[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2]^2)/(a + b)] + (a + b)*(16*a^2*B + 3*b^2*B + 30*a*b*C)*E
llipticE[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*Sqrt[1 - Tan[(c + d*x)/2]^2]*(1 + Tan[(c + d*x)/2]^2)*Sqrt
[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2]^2)/(a + b)] - 2*a*(a*b*(26*B - 6*C) + 12*a^2*C + b^2*(-7*B
 + 24*C))*EllipticF[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*Sqrt[1 - Tan[(c + d*x)/2]^2]*(1 + Tan[(c + d*x)
/2]^2)*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2]^2)/(a + b)]))/(24*a*d*Sqrt[b + a*Cos[c + d*x]]*
Sqrt[Sec[c + d*x]]*(1 + Tan[(c + d*x)/2]^2)^(3/2)*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2]^2)/(
1 + Tan[(c + d*x)/2]^2)])

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(4263\) vs. \(2(475)=950\).

Time = 6.30 (sec) , antiderivative size = 4264, normalized size of antiderivative = 8.20

method result size
default \(\text {Expression too large to display}\) \(4264\)

[In]

int(cos(d*x+c)^4*(a+b*sec(d*x+c))^(3/2)*(B*sec(d*x+c)+C*sec(d*x+c)^2),x,method=_RETURNVERBOSE)

[Out]

-1/24/d/a*(-22*B*a^2*b*cos(d*x+c)^3*sin(d*x+c)-22*B*a^2*b*cos(d*x+c)^2*sin(d*x+c)-17*B*a*b^2*cos(d*x+c)^2*sin(
d*x+c)-42*C*a^2*b*cos(d*x+c)^2*sin(d*x+c)+16*B*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d
*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a^2*b+3*B*(1/(a+b)*(b+a*cos(d*x+c))/(c
os(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a*b
^2-52*B*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(
cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a^2*b+14*B*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF(cot(d*x+
c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a*b^2-8*B*a^3*cos(d*x+c)^4*sin(d*x+c)-8*B
*a^3*cos(d*x+c)^3*sin(d*x+c)-12*C*a^3*cos(d*x+c)^3*sin(d*x+c)-16*B*a^3*cos(d*x+c)^2*sin(d*x+c)-3*B*b^3*cos(d*x
+c)*sin(d*x+c)+24*C*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/
(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a^2*b*cos(d*x+c)+60*C*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b
))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a^2*b*cos(d*x+c)+3
0*C*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d
*x+c))/(cos(d*x+c)+1))^(1/2)*a^2*b*cos(d*x+c)^2+12*C*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos
(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a^2*b*cos(d*x+c)^2-12*C*a^2*b*co
s(d*x+c)*sin(d*x+c)+72*B*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*Ell
ipticPi(cot(d*x+c)-csc(d*x+c),-1,((a-b)/(a+b))^(1/2))*a^2*b+36*C*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b
+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticPi(cot(d*x+c)-csc(d*x+c),-1,((a-b)/(a+b))^(1/2))*a*b^2+16*B*Ellip
ticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(c
os(d*x+c)+1))^(1/2)*a^3*cos(d*x+c)^2+3*B*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos
(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*b^3*cos(d*x+c)^2-6*B*EllipticPi(cot(d*x+c)-c
sc(d*x+c),-1,((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^
(1/2)*b^3*cos(d*x+c)^2-52*B*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(co
s(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a^2*b*cos(d*x+c)^2+14*B*EllipticF(cot(d*x+c)-csc(d*x+c),(
(a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a*b^2*co
s(d*x+c)^2+16*B*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticE(co
t(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a^2*b*cos(d*x+c)^2+3*B*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2
)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a*b^2*cos(d*x+c)^2-10
4*B*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(
d*x+c)/(cos(d*x+c)+1))^(1/2)*a^2*b*cos(d*x+c)+28*B*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+
b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a*b^2*cos(d*x+c)+32*B*EllipticE(co
t(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+
c)+1))^(1/2)*a^3*cos(d*x+c)+6*B*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1
))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*b^3*cos(d*x+c)-12*B*EllipticPi(cot(d*x+c)-csc(d*x+c),
-1,((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*b^3*
cos(d*x+c)+30*C*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticE(co
t(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a*b^2+36*C*EllipticPi(cot(d*x+c)-csc(d*x+c),-1,((a-b)/(a+b))^(1/2))*(
cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a*b^2*cos(d*x+c)^2+144*B*Elli
pticPi(cot(d*x+c)-csc(d*x+c),-1,((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c
))/(cos(d*x+c)+1))^(1/2)*a^2*b*cos(d*x+c)+72*C*EllipticPi(cot(d*x+c)-csc(d*x+c),-1,((a-b)/(a+b))^(1/2))*(cos(d
*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a*b^2*cos(d*x+c)+72*B*EllipticPi(c
ot(d*x+c)-csc(d*x+c),-1,((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(
d*x+c)+1))^(1/2)*a^2*b*cos(d*x+c)^2-96*C*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+
c)+1))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a*b^2*cos(d*x+c)+60*C*(1/(a+b)*(b+a*cos(d*x+
c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2
))*a*b^2*cos(d*x+c)-16*B*a^2*b*cos(d*x+c)*sin(d*x+c)-14*B*a*b^2*cos(d*x+c)*sin(d*x+c)-24*C*(cos(d*x+c)/(cos(d*
x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(
1/2))*a^3-30*C*a*b^2*cos(d*x+c)*sin(d*x+c)+16*B*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(c
os(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a^3+3*B*(cos(d*x+c)/(cos(d*x+c)+1))^(
1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*b^3-
6*B*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticPi(cot(d*x+c)-cs
c(d*x+c),-1,((a-b)/(a+b))^(1/2))*b^3-48*C*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x
+c)+1))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a*b^2+32*B*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d
*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a^2*b*c
os(d*x+c)+6*B*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(
d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a*b^2*cos(d*x+c)-48*C*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(
cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a*b^2*cos(d*x+c)^2+30*C*
(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x
+c),((a-b)/(a+b))^(1/2))*a*b^2*cos(d*x+c)^2-12*C*a^3*cos(d*x+c)^2*sin(d*x+c)+48*C*(cos(d*x+c)/(cos(d*x+c)+1))^
(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticPi(cot(d*x+c)-csc(d*x+c),-1,((a-b)/(a+b))^(1/2))
*a^3-48*C*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a
*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a^3*cos(d*x+c)-24*C*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(c
os(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a^3*cos(d*x+c)^2+96*C*(cos(d*x
+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticPi(cot(d*x+c)-csc(d*x+c),-1,
((a-b)/(a+b))^(1/2))*a^3*cos(d*x+c)+48*C*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+
c)+1))^(1/2)*EllipticPi(cot(d*x+c)-csc(d*x+c),-1,((a-b)/(a+b))^(1/2))*a^3*cos(d*x+c)^2+12*C*EllipticF(cot(d*x+
c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))
^(1/2)*a^2*b+30*C*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE(
cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a^2*b)*(a+b*sec(d*x+c))^(1/2)/(b+a*cos(d*x+c))/(cos(d*x+c)+1)

Fricas [F]

\[ \int \cos ^4(c+d x) (a+b \sec (c+d x))^{3/2} \left (B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\int { {\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right )\right )} {\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \cos \left (d x + c\right )^{4} \,d x } \]

[In]

integrate(cos(d*x+c)^4*(a+b*sec(d*x+c))^(3/2)*(B*sec(d*x+c)+C*sec(d*x+c)^2),x, algorithm="fricas")

[Out]

integral((C*b*cos(d*x + c)^4*sec(d*x + c)^3 + B*a*cos(d*x + c)^4*sec(d*x + c) + (C*a + B*b)*cos(d*x + c)^4*sec
(d*x + c)^2)*sqrt(b*sec(d*x + c) + a), x)

Sympy [F(-1)]

Timed out. \[ \int \cos ^4(c+d x) (a+b \sec (c+d x))^{3/2} \left (B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\text {Timed out} \]

[In]

integrate(cos(d*x+c)**4*(a+b*sec(d*x+c))**(3/2)*(B*sec(d*x+c)+C*sec(d*x+c)**2),x)

[Out]

Timed out

Maxima [F]

\[ \int \cos ^4(c+d x) (a+b \sec (c+d x))^{3/2} \left (B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\int { {\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right )\right )} {\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \cos \left (d x + c\right )^{4} \,d x } \]

[In]

integrate(cos(d*x+c)^4*(a+b*sec(d*x+c))^(3/2)*(B*sec(d*x+c)+C*sec(d*x+c)^2),x, algorithm="maxima")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c))*(b*sec(d*x + c) + a)^(3/2)*cos(d*x + c)^4, x)

Giac [F]

\[ \int \cos ^4(c+d x) (a+b \sec (c+d x))^{3/2} \left (B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\int { {\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right )\right )} {\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \cos \left (d x + c\right )^{4} \,d x } \]

[In]

integrate(cos(d*x+c)^4*(a+b*sec(d*x+c))^(3/2)*(B*sec(d*x+c)+C*sec(d*x+c)^2),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c))*(b*sec(d*x + c) + a)^(3/2)*cos(d*x + c)^4, x)

Mupad [F(-1)]

Timed out. \[ \int \cos ^4(c+d x) (a+b \sec (c+d x))^{3/2} \left (B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\int {\cos \left (c+d\,x\right )}^4\,\left (\frac {B}{\cos \left (c+d\,x\right )}+\frac {C}{{\cos \left (c+d\,x\right )}^2}\right )\,{\left (a+\frac {b}{\cos \left (c+d\,x\right )}\right )}^{3/2} \,d x \]

[In]

int(cos(c + d*x)^4*(B/cos(c + d*x) + C/cos(c + d*x)^2)*(a + b/cos(c + d*x))^(3/2),x)

[Out]

int(cos(c + d*x)^4*(B/cos(c + d*x) + C/cos(c + d*x)^2)*(a + b/cos(c + d*x))^(3/2), x)